For $(N^n,g_N)$, define $(M^{n+1},g)=(\mathbb{R}\times N,\operatorname{d}r^2+\rho^2g_N)$. Write for convenience $\partial_0=\partial_r$, and $\overline{\bullet}, \bullet$ for quantities of $N,M$ respectively , then we have following results:

As an example, consider $(N^{n-1},g_N)$ with $\operatorname{Ric}^N=\frac{n-2}{n-1}\lambda g_N,\lambda<0,$ if there is a function $\rho$ such that $\operatorname{Ric}=\lambda g$, then we get

$$ \left\{\begin{array}{ll}\lambda=-n\frac{\rho''}{\rho}\\\lambda\rho^2=\frac{n-2}{n-1}\lambda-\rho\rho''-(n-2)(\rho')^2\end{array}\right. $$

which gives $\rho=\cosh \left(\sqrt{\frac{\lambda}{1-n}}r\right)$.

For more results, see the notes by Petersen.

reference /source

https://link.springer.com/book/10.1007/978-3-319-26654-1